• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Start
  • Kontakt
    • Made in Vorarlberg
  • Leistungen
    • Web Development
    • Enterprise React-Native App Entwicklung
    • Embedded Systems
    • Java Entwicklung
    • C++ Entwicklung
  • Referenzen
    • Kunden
    • Webdesign & Webapps
    • Mobile Apps
    • Embedded Systems
    • Cloud Apps
  • Neuigkeiten
    • We’re hiring

Search

Anagram Engineering

Webdesign und Softwarelösungen aus Vorarlberg. Ihr Partner für innovative Lösungen rund ums Internet. Full Service Agentur.

Correlation



Next: Phase Difference
Up: Intensity-based correspondence analysis
Previous: Intensity-based correspondence analysis


Correlation

Disparity $ d$, in this case, is the relative displacement between two grayscale distributions. For every pixel $ p=(k,l)$ in the left image, a window with size $ m x n$ centered at the actual pixel is compared with a window which is centered at pixels
$ p' = (k+d,l+d)$ along the epipolar line. Figure 2.19 shows the shift of the window in the right image in case of a standard geometry. In this case
$ p'=(k+d,l)$.

Figure 2.13:
Correlation based similarity – the window is shifted along the epipolar line
Image correlation

The similarity with the highest correlation is chosen. The correlation is defined as

$displaystyle C(d) = frac{sigma_{lr}^2}{sqrt{sigma_l^2 + sigma_r^2}}$ (2.19)


where

begin{equation*}begin{aligned}sigma_l^2 = sum limits_{i=k+d}^{k+m+d} sum ...
...um limits_{j=l}^{l+n} frac{(I_r(i,j)-mu)^2)}{mn} end{aligned}end{equation*}


are the variances of the intensity values of the left and right image and

$displaystyle sigma_{lr}^2 = sum limits_{i=k}^{k+m} sum limits_{j=l}^{l+n} frac{(I_l(i+d,j)-mu_l)(I_r(i,j)-mu_r))}{mn}$ (2.21)


is the covariance. The correlation is at its maximum if the variance is minimal and the covariance is maximal. A lower threshold $ Gamma$ is chosen, which decides whether the similarity is strong enough or not. Thus

$displaystyle d(x) = begin{cases}d & text{if $C(d) > Gamma$ and $d = argmaxlimits_{d}C(d)$} infty & text{else} end{cases}$ (2.22)


Because correlation takes a lot of time to compute, the sum of squared difference (SSD) is often used instead. Equation 2.23 shows the equation of SSD.

$displaystyle SSD(d) = sum limits_{i=k}^{k+m} sum limits_{j=l}^{l+n} (I_l(i+d,j)-I_r(i,j))^2$ (2.23)


If the SSD is at its minimum, the best match has been found. In this case $ Gamma$ is an upper threshold and defines whether the result is small enough or not.

$displaystyle d(x) = begin{cases}d & text{if $SSD(d) < Gamma$ and $d = argminlimits_{d}SSD(d)$} infty & text{else} end{cases}$ (2.24)


Intensity differences in high contrast areas are more reliable than in low contrast areas. A possible solution is to normalize Equation 2.23 with the local variance.

$displaystyle SSD(d) = frac{sum limits_{i=k}^{k+m} sum limits_{j=l}^{l+n} (I_l(i+d,j)-I_r(i,j))^2}{sigma_l^2sigma_r^2}$ (2.25)


Another problem is that cameras often have different sensitivities. A solution for this problem is to normalize the image with variance and intensity. Equation 2.25 would look like

$displaystyle SSD(d) = sum limits_{i=k}^{k+m} sum limits_{j=l}^{l+n} big[ ...
..._l(i+d,j) -mu_l)}{sigma_l^2} - frac{(I_r(i,j)^2 - mu_r)}{sigma_r^2}big]^2$ (2.26)


So far we assumed that we have a fixed window size $ omega$ (m$ times$n). The choice of $ omega$ influences the resulting disparity map. If $ omega$ is very small, many false matches can occur, especially if the images are noisy. If $ omega$ is very big, then the optimum is flattened and the computation time increases. Some approaches use adaptive window sizes to gain their results [KO94]. After calculating disparity values for all pixels, the resulting disparity map should be convolved with a median filter so that single very unrepresentative pixel in a neighbour hood are deleted.


Next: Phase Difference
Up: Intensity-based correspondence analysis

Footer

Kontaktieren Sie uns

Stiegstrasse 24
6830 Rankweil
Vorarlberg, Österreich

+43 650 925 62 64
hello@anagram.at

Was wir machen

Anagram Engineering befindet sich im Herzen Vorarlbergs.

Wir beschäftigen uns mit der Softwareentwicklung für Web, Mobile, und eingebettete Systeme.

Wir erstellen Websites und Desktopsoftware für Microsoft und Linuxsysteme für Betriebe in und um Vorarlberg.

Als Consultants helfen wir Industrieunternehmen bei der Wahl von Softwareframeworks und dem Aufbau von sauberen Softwarearchitekturen.

Erfahren Sie mehr

© 2025 · Anagram Engineering

  • AGB
  • Datenschutz
  • Impressum
  • Kunden
  • Referenzen
  • Kontakt
Manage Cookie Consent
Wir benützen Cookies um unsere Website und unsere Services zu optimieren.
Funktional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistik
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
Einstellungen
{title} {title} {title}
  • Deutsch
  • English