• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • Start
  • Kontakt
    • Made in Vorarlberg
  • Leistungen
    • Web Development
    • Enterprise React-Native App Entwicklung
    • Embedded Systems
    • Java Entwicklung
    • C++ Entwicklung
  • Referenzen
    • Kunden
    • Webdesign & Webapps
    • Mobile Apps
    • Embedded Systems
    • Cloud Apps
  • Neuigkeiten
    • We’re hiring

Search

Anagram Engineering

Webdesign und Softwarelösungen aus Vorarlberg. Ihr Partner für innovative Lösungen rund ums Internet. Full Service Agentur.

The Pinhole Camera



Next: Camera Model with Lens
Up: Perspective Projection
Previous: Perspective Projection


The Pinhole Camera

An ideal model of a camera is the pinhole camera, as seen in Figure 2.2. This kind of
camera can be imagined as a box with a pinhole, through which
light enters and forms a two-dimensional image on the opposite site. A point
$ P=(X,Y,Z)$ in the three-dimensional $ XYZ$-space is projected to an image-point
$ p=(x,y)$ in the two-dimensional $ xy$-space (wall). If the coordinate system of the
$ XYZ$-space is aligned at the pinhole so that the Z-axis coincides with the optical axis and the image
plane has its origin at $ (0,0,f)$, then the projection equations are
given by

$displaystyle x = frac{fX}{Z}$ (2.4)


and

$displaystyle y = frac{fY}{Z}$ (2.5)


Figure 2.2:
Pinhole camera model
Image pinhole

To represent Equation 2.4 and Equation 2.5 in a linear way, we transform the point $ (x,y)$ in the Euclidean plane to a point $ (x,y,1)$ in the projective plane. This represents the same point, we simply added a new coordinate $ 1$. Overall scaling is unimportant. The point
$ p = (alpha x,alpha y,alpha)$ can be re-transformed by dividing through $ alpha$. Thus $ p$ is similar to
$ (frac{x}{alpha},frac{y}{alpha})$. Because scaling is unimportant, the coordinate $ (x,y,1)$ is called homogeneous coordinate. Homogenous coordinates can also be used within a higher dimensional domain. Now we can combine Equation 2.4 and Equation 2.5 to

$displaystyle begin{pmatrix}xcr ycr 1 end{pmatrix} = begin{pmatrix}frac{f...
...cr 0 & 0 & 0 & 1 end{pmatrix} begin{pmatrix}x cr y cr z cr 1 end{pmatrix}$ (2.6)


If we want to know the image coordinates we have to take four more values into account. Namely

$ c_x,c_y$
image principal point, which is the intersection between the camera’s optical axis and the image plane.
$ d_x,d_y$
distance between two sensor elements in $ x$ and $ y$ direction

$ d_x$ and $ d_y$ can normally be found in the datasheet2.2 of the sensor chip. The image principal point has to be found by calibration (see Section 2.2 for more information). If the parameters and the point in camera coordinates are known, we can compute the image coordinates with the following formulation

$displaystyle x_i = frac{x_c}{d_x} + c_x$ (2.7)


and

$displaystyle y_i = frac{y_c}{d_y} + c_y$ (2.8)


where $ x_c$ and $ y_c$ are the coordinates of the point in the camera coordinate system. If we combine Equation 2.6 with Equation 2.7 and Equation 2.8 we can formulate the translation from Point $ P(X,Y,Z)$ to the image coordinates
$ p(x_i,y_i)$

$displaystyle begin{pmatrix}x_icr y_icr 1 end{pmatrix} = begin{pmatrix}fr...
...cr 0 & 0 & 0 & 1 end{pmatrix} begin{pmatrix}x cr y cr z cr 1end{pmatrix}$ (2.9)



Next: Camera Model with Lens
Up: Perspective Projection

Footer

Kontaktieren Sie uns

Stiegstrasse 24
6830 Rankweil
Vorarlberg, Österreich

+43 650 925 62 64
hello@anagram.at

Was wir machen

Anagram Engineering befindet sich im Herzen Vorarlbergs.

Wir beschäftigen uns mit der Softwareentwicklung für Web, Mobile, und eingebettete Systeme.

Wir erstellen Websites und Desktopsoftware für Microsoft und Linuxsysteme für Betriebe in und um Vorarlberg.

Als Consultants helfen wir Industrieunternehmen bei der Wahl von Softwareframeworks und dem Aufbau von sauberen Softwarearchitekturen.

Erfahren Sie mehr

© 2025 · Anagram Engineering

  • AGB
  • Datenschutz
  • Impressum
  • Kunden
  • Referenzen
  • Kontakt
Manage Cookie Consent
Wir benützen Cookies um unsere Website und unsere Services zu optimieren.
Funktional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistik
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage vendors Read more about these purposes
Einstellungen
{title} {title} {title}
  • Deutsch
  • English